Bone Grafting Materials for Dental Applications: A Practical Guide
You will receive 1 credit(s) of continuing education credit upon successful completion of this course. The purchase price of this course is $49.00


This course reviews processes involved in bone grafting and three primary forms of bone grafting material.

Learning Objectives:
Upon completion of this course, participants should be able to do the following:
  1. Describe the three processes involved in bone grafting.
  2. List the three primary forms of bone graft material.
  3. Explain the primary applications of synthetic bone substitutes.
  4. Describe the appropriate material(s) for clinical use.

A variety of grafting materials are available for use in dental applications. Autogenous bone is the material of choice because of its osteogenic properties thereby stimulating bone to form rapidly.  This is extremely important when significant bone augmentation or repair is required. For other dental applications, allografts and alloplasts are appropriate. Knowing the physical and chemical properties of these materials and their mechanisms of action are critical in selecting the correct graft or combination of grafts for each situation encountered. This course discusses current bone grafting options as reported in literature since 1984.


  1. Introduction

  2. Mechanisms

  3. Types of Material

    1. Allogafts

    2. Syhthetic Bone Substitutes - Alloplasts

      1. Ceramics

      2. Hydroxyapatite

      3. TCP

      4. Coralline

      5. Anorganic Bovine Bone

      6. Calcium Carbonate

      7. Bioplant HTR®

      8. Bioactive Glass

      9. Perio Glas®

    3. Composite Grafts

  4. Selection of Material

  5. Regenerative Therapy

  6. Summary

  1. Hislop WS, Finlay PM, Moos KF. A preliminary study into the uses of anorganic bone in oral and maxillofacial surgery. Br J Oral Maxillofac Surg. 1993; 31:149-153.
  2. Lane JM. Bone graft substitutes. Western J Med Dec. 1995; :565-567.
  3. Schepers E, DeClerco M, Ducheyne P, et al. Bioactive glass particulate material as a filler for bone lesions. J Oral Rehabil. 1991; 18:439-452.
  4. Schepers EJG, Ducheyne P, Barbier L, et al. Bioactive glass particles of narrow size range: a new material for the repair of bone defects. Implant Dent. 1993; 2:151-156.
  5. Rummelhart JM, Mellonig JT, Gray JL, et al. A comparison of freeze-dried bone allograft and demineralized freeze-dried bone allograft in human periodontal osseous defects. J Periodontol. 1989; 60:655-663.
  6. Frame JW. Hydroxyapatite as a biomaterial for alveolar ridge augmentation. Int J Oral Maxillofac Surg. 1987; 16:642-655.
  7. Pinholt EM, Bang G, Haanaes HR. Alveolar ridge augmentation in rats by combined hydroxylapatite and osteoconductive material. Scand J Dent Res. 1991; 99:64-74.
  8. Misch CE, Dietsh F. Bone-grafting materials in implant dentistry. Implant Dent. 1993; 2:158-167.
  9. Second-hand bones? (editorial) Lancet. 1992; 340:1443.
  10. Koole R, Bosker H, van der Dussen FN. Late secondary autogenous bone grafting in cleft patients comparing mandibular (ectomesenchymal) and iliac crest (mesenchymal) grafts. J Cranio Max Fac Surg. 1989; 17:28-30.
  11. Garg AK. Practical Implant Dentistry. Houston, Tex, Taylor Publishing Company, 89-101, 1996.
  12. Mellonig JT. Decalcified freeze-dried bone allograft as an implant material in human periodontal defects. Int J Periodontics Restorative Dent. 1984; 6:41-55.
  13. Tatum OJ Jr, Lebowitz MS, Tatum CA, et al. Sinus augmentation: rationale, development, long-term results. New York State Dent J May. 1993; 43-48.
  14. Tatum OJ Jr. Osseous grafts in intra-oral sites. J Oral Implantol. 1996; 22:51-52.
  15. Fetner AE, Hartigan MS, Low SB. Periodontal repair using PerioGlas in nonhuman primates: clinical and histologic observations. Compend Contin Educ Dent. 1994; 15(7):932-939.
  16. Ashman A. The use of synthetic bone materials in dentistry. Compend Contin Educ Dent. 1984; 13(11):1020-1034.
  17. Ashman A. Clinical applications of synthetic bone in dentistry, part I. Gen Dent. 1992; Nov/Dec: 481-487.
  18. Ashman A. Clinical applications of synthetic bone in dentistry, part II: periodontal and bony defects in conjunction with dental implants. Gen Dent. 1993; Jan/Feb: 37-44.
  19. Christensen GJ. Ridge preservation: why not? J Am Dent Assoc. 1996; 127(5):669-670.
  20. Meffert RM, Thomas JR, Hamilton KM, et al. Hydroxylapatite as an alloplastic graft in the treatment of human periodontal osseous defects. J Periodontol. 1985; 56(2):63-73.
  21. Stahl SS, Froum SJ;. Histologic and clinical responses to porous hydroxylapatite implants in human periodontal defects. J Periodontol. 1987; 58(10):689-695.
  22. Frame JW, Rout PG, Browne RM. Ridge augmentation using solid and porous hydroxylapatite particles with and without autogenous bone or plaster. J Oral Maxillofac Surg. 1987; 45:771-777.
  23. Boyne PJ. Advances in preprosthetic surgery and implantation. Curr Opinion Dent. 1991; 1:277-281.
  24. Jarcho M. Biomaterial aspects of calcium phosphates. Dent Clin North Am. 1986; 30(1):25-47.
  25. White E, Shors EC. Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent Clin North Am. 1986; 30(1):49-67.
  26. Pinholt EM, Bang G, Haanaes HR. Alveolar ridge augmentation in rats by BIO-OSS. Scan J Dent Res. 1991; 99:154-161.
  27. Spector M. Characterization of bioceramic implants. Presented at Symposium of Modern Trends in Bone Substitutes, May 10, 11, Lucerne, Switzerland.
  28. Boyne, Phillip J. Osseous Reconstruction of the Maxilla and the Mandible: Surgical Techniques Using Titanium Mesh and Bone Mineral. Chicago, Quintessence Publishing Co, Inc, 1996.
  29. Yukna RA. Clinical evaluation of coralline calcium carbonate as a bone replacement graft material in human periodontal osseous defects. J Periodontol. 1994; 65:177-185.
  30. Boyne P. Use of HTR in tooth extraction sockets to maintain the alveolar ridge height and increase concentration of alveolar bone matrix. Gen Dent. 1995; Sept/Oct: 470-473.
  31. Yukna RA. Clinical evaluation of HTR polymer bone replacement grafts in human mandibular class II molar furcations. J Periodontol. 1994; (4):342-349.
  32. Szabo G. HTR polymer and sinus elevation: a human histologic evaluation. J Long-Term Effets of Medical Implants 2(1):81-92, 1992.
  33. Rosenlicht J. Immediate postextraction placement of an alloplast and titanium screw implant: a seven-year case presentation. Pract Periodontics Aesthet Dent Dec. 1993.
  34. Wilson J, Low SB. Bioactive ceramics for periodontal treatment: comparative studies in the Patus monkey. J Appl Biomater. 1992; 3:123-129.
  35. Wilson J, Clark AE, Hall M, et al. Tissue response to Bioglass endosseous ridge maintenance implants. J Oral Implantol. 1993; 19(4):295-302.
  36. Greenspan DC. Bioglass bioactivity and clinical use. Presented at the Dent Implant Clin Res Group Annual Meeting, St. Thomas, V.I., April 27-29, 1995.
  37. Ducheyne P, Bianco P, Radin S, et al. Bone-bonding biomaterials. The Netherlands: Reed Healthcare Comm, 1-12, 1992.
  38. Schepers EJG, Pinruethai P. Bioceramics, volume 6. Butterworth-Heinemann Ltd., 113-116, 1993.
  39. Schepers EJG, Ducheyne P. Bioceramics, volume 6. Butterworth-Heinemann Ltd. 401-404, 1993.
  40. Wozney JM. The potential role of bone morphogenetic proteins in periodontal reconstruction. J Periodontol. 1995; 66:506-510.
  41. New bone? (bone grafts using bone morphogenetic proteins) (editorial). Lancet. 1992; 339:463-465.
  42. Boyne PJ. Bone induction and the use of HTR polymer as a vehicle of osseous inductor materials. Compend Contin Educ Dent. 1988; (Suppl 10):337-341.
  43. Boyne PJ, Scheer PM. Bone inductive effects of skeletal grown factor with hydroxylapatite and synthetic matrices. Presented at American Association of Oral and Maxillofacial Surgeons meeting. September, 1986, San Francisco, CA (Abstract).
  44. Block MS, Kent JN. Healing of mandibular ridge augmentation using hydroxylapatite with and without autogenous bone in dogs. J Oral Maxillofac Surg. 1985; 43:3-7.
  45. Kraut RA. Composite graft for mandibular alveolar ridge augmentation: a preliminary report. J Oral Maxillofac Surg. 1985; 43:856-859.
  46. Kent JN, Finger IM, Quinn JH, et al. Hydroxyapatite alveolar ridge reconstruction: clinical experiences, complications, and technical modifications. J Oral Maxillofac Surg. 1986; 44:37-49.
  47. Stahl SS, Froum SJ, Tarnow D. Human clinical and histologic responses to the placement of HTR polymer particles in 11 intrabony lesions. J Periodontol. 1990; 61:269-274.
  48. Melcher AH. On the repair potential of periodontal tissues. J Periodontol. 1976; 47:256-260.
  49. Polson AM. Guided tissue regeneration in human furcation defects after using a biodegradable barrier: a multi-center feasibility study. J Periodontol. 1995; May: 377-385.
  50. Sottosanti J. Calcium sulfate: a biodegradable and biocompatible barrier for guided tissue regeneration. Compend Contin Educ Dent. 1992; 13:226.
  51. Sottosanti J. Aesthetic extractions with calcium sulfate and the principles of guided tissue regeneration. Pract Peridontics Aesthet Dent. 1993; 5(5):61.

American Dental Association is an ADA CERP Recognized Provider.

ADA CERP is a service of the American Dental Association to assist dental professionals in identifying quality providers of continuing dental education. ADA CERP does not approve or endorse individual courses or instructors, nor does it imply acceptance of credit hours by boards of dentistry.